The Effect of Al_2O_3 Doping into TiO_2 – ZrO_2 on the Storage and Sulfur-resistance Performance of the NO_x Trap Catalyst $Pt/K/TiO_2$ – ZrO_2

Zhi-Qiang Zou · Ming Meng · Xiao-Yan Zhou · Xin-Gang Li · Yu-Qing Zha

Received: 6 October 2008 / Accepted: 9 November 2008 / Published online: 21 November 2008 © Springer Science+Business Media, LLC 2008

Abstract A series of lean-burn NO_x trap (LNT) catalyst Pt/K/Al₂O₃-TiO₂-ZrO₂ were prepared by sequential impregnation with the support synthesized by coprecipitation. The effect of Al₂O₃ doping into TiO₂–ZrO₂ on the storage and sulfur-resistance performance of the catalyst Pt/K/TiO₂–ZrO₂ was investigated carefully. In situ DRIFTS spectra show that the NO_x is mainly stored as nitrate at the optimal temperature of ~ 350 °C. The NO_x storage capacity (NSC) of Pt/K/TiO₂– ZrO₂ was greatly improved by Al₂O₃ doping due to the remarkably increased specific surface area and the decreased Ti content. The results of sulfation and regeneration by H₂-TPR reveal that the sulfur on Al₂O₃-TiO₂-ZrO₂ supported catalysts is easier to be removed, making them possess much better sulfur-resisting ability than TiO₂–ZrO₂ or Al₂O₃ supported ones. The NSC recovery efficiency of Al₂O₃-TiO₂-ZrO₂ supported catalysts can reach as high as 81–96% while only 30.4 and 62.5% were achieved for the catalysts supported on pure Al₂O₃ and TiO₂–ZrO₂, respectively. The doped catalyst with the Al/(Ti + Zr) atomic ratio of 3:1 always shows the highest NSC before or after sulfation-regeneration.

Keywords Al_2O_3 – TiO_2 – $ZrO_2 \cdot NO_x$ storage \cdot Sulfur-resistance \cdot Potassium

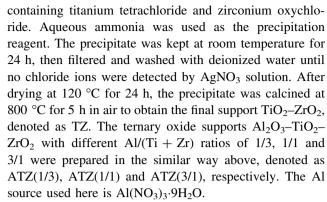
1 Introduction

Lean-burn NO_x trap (LNT) catalyst system is a great solution to increasing fuel economy, decreasing emission

Z.-Q. Zou · M. Meng (☒) · X.-Y. Zhou · X.-G. Li · Y.-Q. Zha Tianjin Key Laboratory of Applied Catalysis Science & Engineering, Department of Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, 300072 Tianjin, People's Republic of China e-mail: mengm@tju.edu.cn

of carbon dioxide and hydrocarbons, and removing poisonous NO_x which can not be effectively reduced to N_2 over traditional three-way catalysts under lean burn condition. The first generation of LNT catalyst was proposed by Toyota in the middle of 1990s [1, 2]. It mainly consists of three major components: (1) noble metals, such as Pt or Pt-Rh for NO_x oxidation and reduction; (2) alkali or alkaline oxides, such as BaO, used for NO_x storage; (3) Al_2O_3 support with a large specific surface area for providing a high dispersion of the other components. The storage and reduction process can be described as follows: during leanburn condition, the NO_x is oxidized and stored as nitrates in the storage component; when the engine is switched to a reducing atmosphere, the NO_x stored as nitrates is released and reduced to N_2 by carbon monoxide and hydrocarbons.

Although the LNT catalyst has been put into market in Japan where the fuel is nearly free of sulfur, it cannot be extensively applied in many other countries due to the relatively high content of sulfur in the fuel, which readily leads to deactivation of LNT catalyst. SO₂ and NO_x, both as acidic gases, are competitive for the same adsorption sites, and sulfate is easier to form than nitrate because of its higher thermodynamic stability. During lean-burn period, sulfur oxides can poison both the basic storage component and the support [3-7]. In addition, under rich-burn condition, sulfur can also accumulate on the noble metal component, and consequently decrease its oxidation ability [8, 9]. The addition of the transition metal to the LNT catalysts seems to be a way to improve the sulfur tolerance. By comparing the additive components such as Fe, Co, Ni, and Cu, Yamazaki et al. [10] found that Fe could effectively promote sulfate decomposition by suppressing the growth of sulfate particles. However, Luo et al. [11] found that the introduction of Fe to the Pt/Ba/Al₂O₃ catalyst decreases the Pt-Ba interaction by encapsulation of Pt in


the matrix of Fe/FeOx lattice after repeated redox cycles, leading to the decrease of NO $_x$ storage capacity (NSC) of the catalyst, and making sulfur removal more difficult, since Fe selectively catalyzes the reduction of BaSO $_4$ into BaS.

Recently, a new LNT catalyst Pt/K/TiO2-ZrO2 defined as the third generation of LNT catalyst previously [12, 13] has been put forward, using acidic binary oxides as a support. The acidity of this kind of support can prevent SO₂ adsorption and promote SO₂ desorption, largely increasing the sulfur-resisting ability of the LNT catalyst, as compared with the traditional Pt/Ba/Al₂O₃ catalyst. Besides, potassium is another element that has shown potential as a storage component with a significant benefit at higher temperatures as the K-based nitrate is more stable than the typical Ba nitrate [14]. Therefore, it is believed that the new generation of LNT catalyst Pt/K/TiO2-ZrO2 is promising to be extensively used for lean-burn emission abatement. Takahashi et al. [15] have studied the influence of TiO₂ to ZrO₂ ratio on NO_x storage and sulfur-resistance performance of the LNT catalyst. It is shown that the optimal Ti/Zr atomic ratio is 4:6. However, after calcination at a high temperature of 800 °C [12], it is found that TiO₂–ZrO₂ binary oxides show low specific surface areas. Imagawa et al. [16, 17] found that the thermal aggregation of TiO₂-ZrO₂ particles can be inhibited in the presence of Al₂O₃ particles. They also indicated that the LNT catalyst using the ternary oxides synthesized by co-precipitation as a support shows larger NO_x storage capacity than that using the physical mixture of Al₂O₃ and TiO₂-ZrO₂ binary oxides as a support. Even so, the effect of Al₂O₃ doping on the storage routes and sulfur-resistance performance of TiO₂-ZrO₂ supported catalysts has not been investigated systematically, and the Al content in the support is never optimized, either. Therefore, this work focuses on the investigation of the NO_x storage mechanism and sulfurresistance performance of Al₂O₃-TiO₂-ZrO₂ supported LNT catalysts, and the optimization of Al content. The catalysts using TiO₂-ZrO₂ and pure Al₂O₃ as supports were also prepared and investigated for comparison. The NO_x adsorption and storage, and sulfur adsorption and desorption behaviors over these LNT catalysts were characterized by in situ diffuse reflectance infrared spectroscopy (DRIFTS) and temperature-programmed reduction by hydrogen (H₂-TPR).

2 Experimental

2.1 Catalyst Preparation

TiO₂–ZrO₂ binary oxide support with a molar ratio of 4:6 was prepared by co-precipitation in an aqueous solution

The catalysts were prepared by sequential impregnation. At first, the synthesized support was impregnated with an aqueous solution of H₂PtCl₆·6H₂O, then dried at 120 °C overnight and calcined at 250 °C for 1 h in air to obtain the precursor, which was subsequently impregnated in an aqueous solution of CH₃COOK. After drying at 120 °C overnight and calcination at 750 °C for 2 h, the final powder sample was pressed, crushed and sieved to 40-60 mesh. The loadings of Pt and CH₃COOK are 1 and 7 wt%, respectively. Before experiments, the samples were reduced at 500 °C for 1 h in a gas of 10 vol% H₂ in N₂. The final catalysts are denoted as Pt/K/TZ, Pt/K/ATZ(1/3), Pt/K/ATZ(1/1) and Pt/K/ATZ(3/1), respectively. For comparison, the sample Pt/K/Al₂O₃ was also prepared by the same procedure above using commercial γ-Al₂O₃ precalcined at 800 °C as a support.

2.2 Catalyst Characterization

The measurement of the specific surface area ($S_{\rm BET}$) was carried out at -196 °C on Quantachrome QuadraSorb SI instrument by using the nitrogen adsorption method. The samples were pretreated in vacuum at 300 °C for 4 h before experiments. The specific surface area ($S_{\rm BET}$) was determined from the linear part of the BET curve.

XRD patterns were recorded on an X'pert Pro diffractometer (PANAlytical Company) with a rotating anode using Co K α as radiation source ($\lambda=0.1790$ nm) at 40 kV and 40 mA. The data of 2θ from 10° to 90° range were collected with the step size of 0.02° .

Temperature-programmed reduction (TPR) measurement was conducted on a TPDRO 1100 apparatus supplied by Thermo-Finnigan company. Before detection by the TCD, the gas was purified by a trap containing CaO + NaOH materials in order to remove the $\rm H_2O$ and $\rm CO_2$. Each time, 30 mg of the sample was heated from room temperature to 900 °C at a rate of 10 °C/min. A mixture gas consisting of $\rm H_2$ and $\rm N_2$ with $\rm H_2$ content of 5% (volume percentage) was used as reductant with a flow rate of 20 mL/min. The operation condition is close to the well-known TPR criteria of Monti and Baiker equation [18].

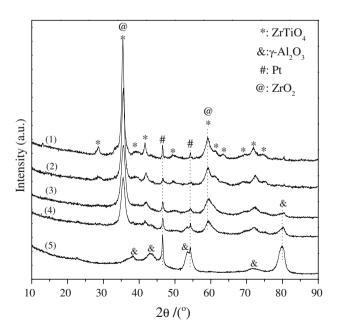
In situ diffuse reflectance infrared spectroscopy (DRIFTS) measurement was performed on a Nicolet Nexus spectrometer equipped with a MCT detector cooled by liquid nitrogen, and an in situ chamber allowing the sample heated up to 600 °C. The NO $_x$ sorption experiments over different samples were carried out at 350 °C. The powder sample (15 mg) was firstly pretreated in He at 350 °C for 30 min to record the background spectrum. Then 400 ppm NO + 5% O $_2$ in N $_2$ was introduced to the sample cell, and the spectra were collected at different exposure time up to 60 min. The flow rate of the mixture gas was 50 mL/min.

For NO_x adsorption at different temperatures, the steps were the same as described above. The temperature was increased from 200 to 500 °C at 50 °C interval. The powder sample was firstly pretreated in He at every temperature for 15 min and then the background spectrum was recorded. After exposure to $NO + O_2$ for 30 min at each temperature, the DRIFT spectra were collected.

The DRIFTS spectra of SO_2 adsorption on different samples at 400 °C were also recorded and the steps were similar to those for NO adsorption except that the adsorptive gas was changed into the mixture of 200 ppm SO_2 , 5 vol O_2 and the balance O_2 .

2.3 NO_x Storage Capacity (NSC) Measurement, Sulfur-Aging and Regeneration Treatment

NSC measurements were carried out in a quartz-tubular continuous flow reactor (i.d. = 8 mm) containing 1.2 g of each catalyst (40–60 mesh). After the temperature reached 350 °C, a gas mixture of 400 ppm NO, 5% O_2 and the balance N_2 was introduced at a rate of 400 mL/min, corresponding to a space velocity of 20,000 h⁻¹. The concentrations of NO, NO₂, and total NO_x at the reactor outlet were monitored by a Chemiluminescence NO–NO₂–NO_x Analyzer (Model 42*i*-HL, Thermo Scientific).

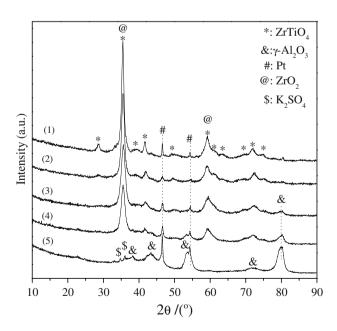

For sulfur-aging experiments, 400 mg catalyst was used, each exposed to a gas containing 200 ppm SO_2 , 5% O_2 and the balance N_2 at 400 °C for 2 h, with a flow rate of 160 mL/min. The ratio of the molar ratio of the total amount of SO_2 flowing through the catalyst in the fixed-bed reactor to the amount of K in the aged catalyst is 0.55, which ensures that the deep sulfation can be achieved if all the K is transformed into K_2SO_4 . The regeneration of sulfur-aged catalysts was performed in a gas containing 10 vol% H_2 in N_2 at 500 °C for 60 min using 400 mg of the sulfur-aged catalyst.

The NO_x storage capacities of the regenerated catalysts were also measured. The procedure was same to fresh catalysts but 400 mg of each regenerated catalyst was used, corresponding to a space velocity of 60,000 h⁻¹.

3 Results and Discussion

3.1 XRD and BET Results

XRD test was performed in order to investigate the bulk structure of all the samples. From the XRD patterns of the fresh samples shown in Fig. 1, it can be seen that ZrTiO₄ appears in all the samples except Pt/K/Al₂O₃. However, the corresponding peaks get weaker with the contents of Ti and Zr decreasing, implying the decreased crystallite size of ZrTiO₄. It is noted that the peak around $2\theta = 59.0^{\circ}$ should be contributed not only by ZrTiO₄ but also by tetragonal ZrO₂. Though ZrTiO₄ phase (PCPDFWIN 74-1504) also shows a peak at $2\theta = 59.5^{\circ}$, the intensity of which should be weaker than the peaks at $2\theta = 62.0^{\circ}$ and 63.6° which are close to the peak at $2\theta = 59.5^{\circ}$. However, the peak in Fig. 1 around $2\theta = 59.0^{\circ}$ is stronger than the two peaks at higher angle positions close to itself. At the same time, tetragonal ZrO₂ phase (PCPDFWIN 79-1769) shows the first strongest peak at $2\theta = 35.2^{\circ}$ and the second strongest peak at $2\theta = 59.0^{\circ}$. Therefore, it is reasonable to assign the peak around $2\theta = 59.0^{\circ}$ to the total diffraction effect of ZrTiO₄ and ZrO₂.The strongest peak of ZrO₂ may be covered by the peak at $2\theta = 35.5^{\circ}$ corresponding to ZrTiO₄. This interpretation above is very consistent with the ratio of Ti to Zr in the samples of 4/6, that is to say, the molar percentage of Zr is larger than that of Ti. Most of the Zr oxides reacted with Ti oxides to form ZrTiO₄ during calcination at 800 °C and then excess Zr component were segregated in the form of ZrO₂.


Fig. 1 XRD patterns of the fresh samples (*1*) Pt/K/TZ, (2) Pt/K/ATZ(1/3), (*3*) Pt/K/ATZ(1/1), (*4*) Pt/K/ATZ(3/1), (*5*) Pt/K/Al₂O₃

As shown in Fig. 1, γ -Al₂O₃ phase clearly appears on the sample Pt/K/Al₂O₃ with pure Al₂O₃ as a support. However, the peak at $2\theta = 80.0^{\circ}$ corresponding to γ -Al₂O₃ also appears on the sample Pt/K/ATZ(3/1) and Pt/K/ATZ(1/1), indicating that the supports of the two samples are mixtures of ZrTiO₄, ZrO₂ and γ -Al₂O₃. Metallic Pt can be found on all the samples from Fig. 1 and the sample Pt/K/Al₂O₃ shows much stronger diffraction peaks of Pt compared to other samples, indicative of the largest Pt particles on Al₂O₃ support. The absence of the diffraction peaks of K phases suggests that K component is well dispersed on the supports or present in amorphous state.

The XRD patterns of sulfur-aged samples are shown in Fig. 2. All the sulfur-aged samples display the same diffraction patterns with the fresh samples except Pt/K/Al₂O₃. Two very small but visible peaks ascribed to K₂SO₄ can be found on the XRD pattern of sulfur-aged Pt/K/Al₂O₃. This means that SO₂ is easier to react with the K species supported on Al₂O₃, suggesting the inferior sulfur-resistance ability of the sample Pt/K/Al₂O₃ to other samples containing ZrTiO₄. After regeneration of the sulfur-aged samples, their XRD patterns are almost the same as those of the fresh samples (figure not shown). However, the very weak peak at 1,120 cm⁻¹ assigned to K₂SO₄ can be found on the IR spectra of the regenerated samples (figure not shown). Theses results indicate that most of the sulfur species have been removed after regeneration and the residual amount of K₂SO₄ can hardly detected by XRD but only by IR.

The specific surface areas of the supports TiO₂–ZrO₂, TiO₂–ZrO₂–Al₂O₃ and pure Al₂O₃ as well as their corresponding catalysts are shown in Table 1. It is evident that

Fig. 2 XRD patterns of the sulfur-aged samples (1) Pt/K/TZ, (2) Pt/K/ATZ(1/3), (3) Pt/K/ATZ(1/1), (4) Pt/K/ATZ(3/1), (5) Pt/K/Al₂O₃

Table 1 Specific surface area of the supports and corresponding catalysts

Sample	Support (m ² /g)	Catalyst (m ² /g)	
Pt/K/TZ	30	24	
Pt/K/ATZ(1/3)	62	43	
Pt/K/ATZ(1/1)	103	72	
Pt/K/ATZ(3/1)	118	95	
Pt/K/Al ₂ O ₃	138	134	

pure Al_2O_3 shows the largest surface area due to its good thermal stability while TiO_2 – ZrO_2 possesses the lowest surface area of only 30 m²/g. As expected, Al_2O_3 doping into the binary oxide TiO_2 – ZrO_2 increased its surface area obviously, and with the content of Al increasing, the surface area of ternary oxide was further elevated. This result is consistent with the XRD result above where the crystallite size of $ZrTiO_4$ decreases with Al content increasing.

After the support was impregnated with Pt and K, the corresponding catalyst always shows a lower surface area than pure supports. For pure Al_2O_3 this decrease is not significant while for other supports a decrease in the range of 20–30% can be observed. Even so, the sequence among different catalysts is also the same as that among different supports, indicating that the Al content plays an important role in keeping high specific surface areas of the final catalysts.

3.2 In situ DRIFTS of NO and O₂ Co-adsorption

Although nano-composite Al₂O₃-TiO₂-ZrO₂ has ever been synthesized by Imagawa et al. [16], the NO_x storage routes of the LNT catalyst with K supported on this kind of ternary oxides support have not been investigated before. Recently we have reported the NO_x storage routes over Pt/K/TiO₂-ZrO₂ using the binary oxides TiO₂-ZrO₂ as a support [13]. To make clear of the NO_x storage routes over the K based LNT catalysts using Al₂O₃-TiO₂-ZrO₂ ternary oxides as supports, in situ DRIFTS experiment was carried out at different temperatures over all the samples. It is found that the spectra for all the five samples are almost the same, so the DRIFTS spectra of NO + O2 co-adsorption on the sample Pt/K/ATZ(1/1) were selected as a representative to be shown in Fig. 3. It can be seen that the spectra are obviously temperature dependent. When the adsorption temperature is as low as 200 °C, a peak appears at 1,248 cm⁻¹, indicating the formation of plenty of free nitrite ions [14]. The appearance of another very weak peak at 1,376 cm⁻¹ suggests the formation of a small quantity of free nitrate ions [14]. When the temperature is elevated to 250 °C, the peak at 1,248 cm⁻¹ has disappeared while the peak associated with nitrates gets stronger. This means that the increased temperature favors the activation of oxygen species and then contributes the oxidation of nitrites to

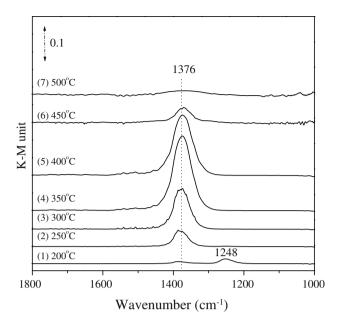


Fig. 3 In situ DRIFTS spectra of $NO + O_2$ adsorption over Pt/K/ATZ(1/1) at different temperatures for 30 min

nitrates. However, when the adsorption temperature is higher than 350 °C, the nitrate-related peak decreases gradually, since high temperature leads to the decomposition of nitrate. Up to 500 °C, the nitrate decomposes completely. In a summary, the NO_x storage routes depend strongly on the temperature. At a low temperature of 200 °C, NO_x storage should mainly proceeds via nitrite intermediates while at the temperature above 250 °C, NO_x storage mainly follows nitrate route. The optimal temperature for NO_x trapping efficiently as nitrate is around 350 °C, which is in line with the results obtained for $Pt/K/TiO_2$ – ZrO_2 catalysts in previous study [13].

Figure 4 shows the DRIFTS spectra of $NO + O_2$ co-adsorption over Pt/K/ATZ(1/1) at 350 °C for different time. As expected, nitrate is the only intermediate, the peak intensity of which is increased with time going. However, after 30 min, the nitrate peak gets stronger more slowly than before, indicative of a slow NO_x storage process. There are two possible explanations for this. On the one hand, as proposed in previous study [13], the storage sites of K species on the catalyst surface can be divided into two categories: one adjacent to Pt, and another away from Pt, since the amount of K loading is much larger than that of Pt. The close contact of Pt sites with K sites can effectively promote the storage process by oxygen spillover from Pt sites to K sites, making the rapid NO_x storage as nitrate over these K sites. On the K sites away from Pt, NO₂ can not be immediately oxidized to nitrate, and nitrites could not be oxidized into nitrates timely, either, due to the lack of active oxygen from Pt sites. Therefore, the formation of nitrate on K sites away from Pt is slower than that on K

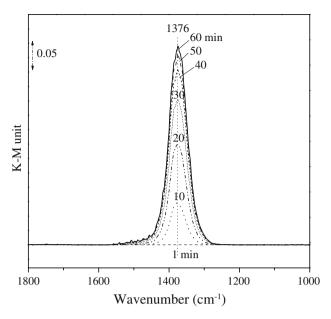


Fig. 4 In situ DRIFTS spectra of NO + $\rm O_2$ adsorption over Pt/K/ATZ(1/1) at 350 °C for different time

sites adjacent to Pt. On the other hand, the storage process is also related to the dispersion of K species. Although no evident bulk K_2O or K_2CO_3 can be detected by XRD, it is still considered that K species exists in two states, namely the highly dispersed phase and relatively large crystallites phase which is still below XRD detection limit. The NO_x storage on highly dispersed potassium phase should be much quicker than on large crystallites potassium phase because of the surface to bulk diffusion limitation.

3.3 In situ DRIFTS of SO₂ Adsorption

Figure 5 shows in situ DRIFTS spectra of SO₂ + O₂ coadsorption on the fresh LNT catalysts at 400 °C for 30 min. The band at 1,143 cm⁻¹ related to sulfate [7, 12, 19, 20] can be clearly observed for the sample Pt/K/TZ. After doping Al₂O₃ into TiO₂-ZrO₂ support, this peak shifts to 1,200 cm⁻¹ and it shifts to 1,215 cm⁻¹ for the pure Al₂O₃ supported sample. However, the IR spectra of all the sulfur-aged samples used for XRD test (not shown here) exhibits a main peak at 1,120 cm⁻¹, which is consistent with that of the reference sample K₂SO₄ and the value reported in literature [21]. Furthermore, the evident bulk K₂SO₄ can be found from XRD on the sample Pt/K/ Al₂O₃. On the one hand, this apparent inconsistency between IR results of sulfur-aged samples and DRIFTS results seems to be due to the differences in SO₂ treatment. For XRD and IR experiments, and aliquot of each catalyst was placed in a flow reactor and treated in diluted SO₂ flow at 400 °C for 2 h whereas for in situ DRIFTS experiments, the treatment was done in the DRIFTS in situ reactor in diluted SO₂ flow at 400 °C for 30 min. On the other hand,

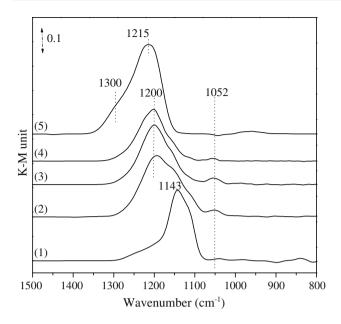
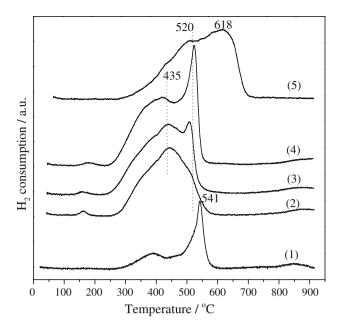



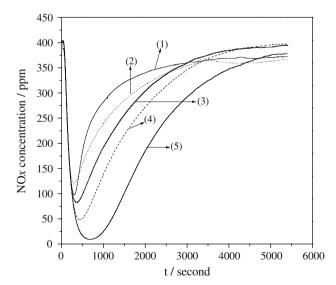
Fig. 5 In situ DRIFTS spectra of SO_2+O_2 adsorption on the fresh samples at 400 °C (1) Pt/K/TZ, (2) Pt/K/ATZ(1/3), (3) Pt/K/ATZ(1/1), (4) Pt/K/ATZ(3/1), (5) Pt/K/Al $_2O_3$

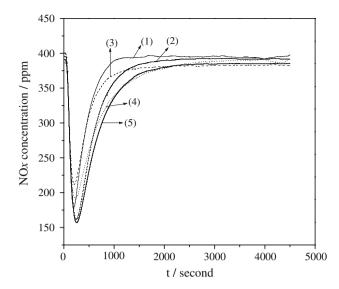
the shifts of peak to higher wave numbers after Al₂O₃ doping may result from the different configuration of sulfate on the samples. It is reported that different configuration of SO_4^{2-} can form on the surface of metal oxides, such as unidentate, chelating bidentate and bridged bidentate [22, 23]. For SO₂ and O₂ co-adsorption on the sample Pt/K/TZ, the formation of unidentate sulfate associated with K₂O is possible. However, when Al₂O₃ was doped into TiO₂–ZrO₂, much bridged bidentate sulfate may have formed with the sulfur atom bonded to the surface oxygen of K₂O and Al₂O₃ simultaneously due to the basicity of Al₂O₃. Consequently, higher wave number can be observed for the Al₂O₃ containing samples in Fig. 5. The small shoulder band at 1,300 cm⁻¹ for Pt/K/Al₂O₃ suggests the existence of a small quantity of surface Al₂(SO₄)₃ [20]. In Al₂O₃ doped samples, the existence of trace Al₂(SO₄)₃ is also potential, whose band may be covered by that of K₂SO₄. Besides these, the very small peak at 1,052 cm⁻¹ for all the samples is also resulted from the vibration mode of sulfate group [19]. From the intensity of the main bands related to sulfate, it is inferred that more sulfur species have deposited on Al₂O₃ supported sample, indicative of its worse sulfur-resistance performance, the use of ternary oxides Al₂O₃-TiO₂-ZrO₂ as support decreased the sulfur deposition to some extent.

3.4 H₂-TPR Results

H₂-TPR experiments were performed on sulfur-aged catalysts to investigate the sulfur desorption behavior, and the results are presented in Fig. 6. For the Pt/K/TZ catalyst, the

Fig. 6 H₂-TPR profiles of sulfur-aged samples (1) Pt/K/TZ, (2) Pt/K/ATZ(1/3), (3) Pt/K/ATZ(1/1), (4) Pt/K/ATZ(3/1), (5) Pt/K/Al₂O₃


profile is very similar to that reported in our previous study [12] for Pt/K/TiO₂–ZrO₂, though the two catalysts were calcined at different temperatures and different Ti/Zr ratios were adopted during preparation. As previously interpreted, the peak at relatively low temperature of 390 °C can be attributed to the reduction of sulfate species formed from -OK groups, and that at relatively high temperature of 541 °C perhaps corresponds to the reduction of potassium sulfate derived from the highly dispersed K₂O. It is observed that a very wide desorption peak from 300 to 700 °C appears for the sample Pt/K/Al₂O₃, which should be related to the reduction of bulk sulfate, since K₂SO₄ has been found over this sample from XRD results. Besides, it cannot be ruled out that the reduction of surface Al₂(SO₄)₃ is included in this extremely wide reduction peak. By comparison, it is obvious that the sulfur desorption from the sulfur-aged catalyst Pt/K/Al₂O₃ is the most difficult, indicative of its worst regeneration ability. For the catalysts using ternary oxides Al₂O₃-TiO₂-ZrO₂ as supports, the main reduction peak of sulfate appears around 435 °C, much lower than those of Pt/K/Al₂O₃ and Pt/K/TZ, suggesting remarkably improved regeneration performance. Worth noting that a small peak at 520 °C emerges for the three samples and it gets stronger with Al content increasing. Therefore, this peak can be ascribed to the reduction of surface Al₂(SO₄)₃, which is in good agreement with the analysis of DRIFTS spectra of SO₂ adsorption that the existence of surface Al₂(SO₄)₃ is possible after sulfation. The extremely weak peak below 200 °C in Fig. 6 occurs on the three samples with ternary oxides as supports, which may be due to the reduction of some PtOx


species in the three sulfur-aged samples. From the XRD peaks of Pt on the fresh samples shown in Fig. 1, it can be inferred that the Pt particles in these three samples with ternary oxides as supports are smaller than those in the sample Pt/K/TZ and Pt/K/Al₂O₃. Therefore, during sulfation treatment, the smaller Pt particles may be easier reoxidized than the larger ones. However, the XRD patterns of the sulfur-aged samples shown in Fig. 2 suggest that metal Pt is always the main Pt species. So, only partial smaller Pt particles in the three samples were reoxidized during sulfation. As a whole, the catalysts with ternary oxides Al₂O₃-TiO₂-ZrO₂ as supports show much lower sulfur desorption temperatures compared to the catalysts with TiO₂-ZrO₂ or pure Al₂O₃ as a support, suggesting their much better sulfur-resistance performance. At the same time, the desorption temperature is also much lower than that for traditional Pt/Ba/Al₂O₃ LNT catalysts [6, 7].

3.5 NO_x Storage Behaviors

Isothermal experiments of NO_x storage were carried out over all the samples at 350 °C since the DRIFTS results of NO adsorption have revealed that the samples show the largest NO_x storage capacity at this temperature. Figure 7 shows the change of outlet concentrations of NO_x with time after the feed gas was switched to the fresh catalysts bed, and Fig. 8 shows those for the regenerated catalysts. The NO_x storage amounts, calculated by integrating the concentration curves, are listed in Table 2. From Fig. 7, it can be seen that before NO_x concentration reaches its rock bottom, the concentration decreases very quickly, implying a fast storage process. However, after this process, the NO_x

Fig. 7 Outlet concentration of NO_x versus time over the fresh samples (1) Pt/K/TZ, (2) Pt/K/ATZ(1/3), (3) Pt/K/ATZ(1/1), (4) Pt/K/ATZ(3/1), (5) Pt/K/Al₂O₃

Fig. 8 Outlet concentration of NO_x versus time over the regenerated samples (1) Pt/K/TZ, (2) Pt/K/ATZ(1/1), (3) Pt/K/Al₂O₃, (4) Pt/K/ATZ(1/3), (5) Pt/K/ATZ(3/1)

Table 2 NO_x storage capacity (NSC) of the samples

Sample code	Fresh sample (µmol/g)	After regeneration (μmol/g)	Recovery efficiency(%)
Pt/K/TZ	96	60	62.5
Pt/K/ATZ(1/3)	116	105	90.5
Pt/K/ATZ(1/1)	125	120	96.0
Pt/K/ATZ(3/1)	158	128	81.0
Pt/K/Al ₂ O ₃	227	69	30.4

concentration gets back to its inlet concentration at a lower and lower speed, indicating a slow storage process. The reason has been elucidated in detail in Sect. 3.2. From Table 2, it is found that the NSC for all the fresh catalysts is much lower than the theoretic NSC (714 µmol/g) calculated from the K loading, assuming that all the K species can be utilized for NO_x storage. Besides, the NSC increases with Al content increasing and the catalyst with pure Al₂O₃ as support shows the largest NSC. This can be explained as follows from two sides. On the one hand, the transformation from K₂O or K₂CO₃ to nitrates is limited by thermodynamic equilibrium. On the other hand, the potassium species in Pt/K/TiO₂-ZrO₂ can react with TiO₂ via solid-phase-reaction, leading to the deactivation of some K species [15]. Therefore, it is reasonable that the experimental NSC is lower than the theoretic NSC. The elevation of the atomic ratio of Al/(Ti + Zr) is equal to lowering Ti content, making more potassium usable. Additionally, the increased specific surface area with Al content increasing should also increase the NO_x storage amount by better dispersing K species.

After sulfation at $400\,^{\circ}\text{C}$ and regeneration at $500\,^{\circ}\text{C}$, the NSC of each catalyst has decreased seen from Fig. 8 and

Table 2. However, the regenerated catalysts with ternary oxides Al₂O₃-TiO₂-ZrO₂ as supports show obviously much larger NSC than that for those with binary oxide TiO₂-ZrO₂ or pure Al₂O₃ as a support. The recovery efficiency of Pt/K/TZ is only 62.5% while 81-96% of recovery efficiency can be achieved when Al₂O₃ was added into the TiO2-ZrO2 support. Besides, the recovery efficiency decreased to only 30.4% for the catalyst supported on pure Al₂O₃. This result indicates that the best sulfurresistance can be obtained over the catalyst supported on Al-contained ternary oxides. The NSC of the regenerated catalyst and its recovery efficiency should be closely related to the desulfation behavior of the catalysts. As seen in Fig. 6, the sulfate desorption is the most difficult over the sample Pt/K/Al₂O₃, so, the recovery of K storage sites in this sample is least efficient, showing a low NSC (69 μmol/g) after sulfation and regeneration. In contrast, the lower sulfur desorption temperature can be found for the catalysts with ternary oxides as the supports, and therefore, both high NSC and recovery efficiency can be retained. In literature, it is ever suggested that the acidity of ZrTiO₄ can prevent SO₂ adsorption and promote SO₂ desorption, and Pt/K/TiO₂-ZrO₂ catalyst is promising due to its good sulfur-resistance [12, 15]. In this study, it is found that the doping of proper amount of Al₂O₃ into TiO₂-ZrO₂ binary oxides can further not only increase its NO_x storage capacity but also improve its sulfur-resistance performance by increasing the thermal-resistance of the support and promoting the sulfur desorption from the sulfur-aged catalyst. Among the ternary oxides supported catalysts investigated here, the catalyst with the atomic ratio of Al/(Ti + Zr) of 3/1 always shows the highest NSC before or after sulfation-regeneration, which is promising for the practical use in lean-burn NO_x abatement.

4 Conclusions

The doping of Al₂O₃ into TiO₂–ZrO₂ oxides can improve both the NSC and sulfur-resistance performance of the LNT catalyst Pt/K/TiO₂–ZrO₂. Therefore, the *K*-based LNT catalyst with ternary oxides Al₂O₃–TiO₂–ZrO₂ as a support is more promising for application in lean-burn NO_x abatement. NO_x storage on this catalyst mainly proceeds via nitrite intermediate at the temperature lower than 200 °C, while at the temperature above 250 °C, NO_x storage mainly follows nitrate route. The optimal temperature for NO_x trapping as nitrates is around 350 °C. Compared with the *K*-based LNT catalysts with TiO₂–ZrO₂ or pure Al₂O₃ as supports, the catalysts with Al-containing ternary oxides as the supports show much better sulfur-resistance performance due to the much easier desorption of sulfur. After sulfation-regeneration, the catalysts

supported on the ternary oxides possess much larger NSC. At the same time, the high NSC recovery efficiency of 81–96% can be achieved over the catalysts supported on ternary oxides Al_2O_3 – TiO_2 – ZrO_2 while only 30.4 and 62.5% were obtained over the catalysts supported on pure Al_2O_3 and TiO_2 – ZrO_2 oxides, respectively. The optimal atomic ratio of Al/(Ti + Zr) is 3/1 from the view of both the NO_x storage capacity and the sulfur-resistance performance.

Acknowledgments This work is financially supported by the National Natural Science Foundation of China (No. 20876110), the Program of New Century Excellent Talents in University of China (NCET-07-0599). The authors are also grateful to the "863" Programs of the Ministry of Science and Technology of China (2008AA06Z323), the Natural Science Foundation of Tianjin (No. 07JCYBJC15100) and the Cheung Kong Scholar Program for Innovative Teams of the Ministry of Education (No. IRT0641).

References

- Shinjoh H, Takahashi N, Yokota K, Sugiura M (1998) Appl Catal B 15:189
- 2. Matsumoto S (2004) Catal Today 90:183
- Courson C, Khalfi A, Mahzoul H, Hodjati S, Moral N, Kiennemann A, Gilot P (2002) Catal Commun 3:471
- Engström P, Amberntsson A, Skoglundh M, Fridell E, Smedler G (1999) Appl Catal B 22:L241
- 5. Takeuchi M, Matsumoto S (2004) Top Catal 28:151
- Matsumoto S, Ideka Y, Suzuki H, Ogai M, Miyoshi N (2000) Appl Catal B 25:115
- Sedlmair C, Seshan K, Jentys A, Lercher JA (2002) Catal Today 75:413
- Amberntsson A, Skoglundh M, Jonsson M, Fridell E (2002) Catal Today 73:279
- Amberntsson A, Skoglundh M, Ljungström S, Fridell E (2003)
 J Catal 217:253
- Yamazaki K, Suzuki T, Takahashi N, Yokota K, Sugiura M (2001) Appl Catal B 30:459
- 11. Luo JY, Meng M, Zha YQ, Xie YN, Hu TD, Zhang J, Liu T (2008) Appl Catal B 78:38
- 12. Liu Y, Meng M, Li XG, Guo LH, Zha YQ (2008) Chem Eng Res Des 86:932
- Liu Y, Meng M, Zou ZQ, Li XG, Zha YQ (2008) Catal Commun 10:173
- 14. Toops TJ, Smith DB, Partridge WP (2006) Catal. Today 114:112
- Takahashi N, Suda A, Hachisuka I, Sugiura M, Sobukawa H, Shinjoh H (2007) Appl Catal B 72:187
- Imagawa H, Tanaka T, Takahashi N, Matsunaga S, Suda A, Shinjoh H (2007) J Catal 251:315
- H. Imagawa, T. Tanaka, N. Takahashi, S. Matsunaga, A. Suda, H. Shinjoh, Appl. Catal. B (2008), doi:10.1016/j.apcatb.2008.07.019
- 18. Monti DAM, Baiker A (1983) J Catal 83:323
- Fanson PT, Horton MR, Delgass WN, Lauterbach J (2003) Appl Catal B 46:393
- Abdulhamid H, Fridell E, Dawody J, Skoglundh M (2006) J Catal 241:200
- Peralta MA, Milt VG, Cornaglia LM, Querini CA (2006) J Catal 242:118
- 22. Chen JP, Yang RT (1993) J Catal 139:277
- 23. Lavalley JC (1996) Catal Today 27:377

